
1) AASHTO III, 114 cm depth reaching to spans up to 25 m. |
2) 120 cm depth section length reaching to spans of 25 m. |
3) 85 cm depth section length reaching to spans of 20 m. |
|
Prestressed concrete
Prestressed concrete is a form of concrete used in construction which is "pre-stressed" by being placed under compression prior to supporting any loads beyond its own dead weight. This compression is produced by the tensioning of high-strength "tendons" located within or adjacent to the concrete volume, and is done to improve the performance of the concrete in service. Tendons may consist of single wires, multi-wire strands or threaded bars, and are most commonly made from high-tensile steels, carbon fiber or aramid fiber. The essence of prestressed concrete is that once the initial compression has been applied, the resulting material has the characteristics of high-strength concrete when subject to any subsequent compression forces, and of ductile high-strength steel when subject to tension forces. This can result in improved structural capacity and/or serviceability compared to conventionally reinforced concrete in many situations.
Prestressed concrete is used in a wide range of building and civil structures where its improved performance can allow longer spans, reduced structural thicknesses, and material savings compared to simple reinforced concrete. Typical applications include high-rise buildings, residential slabs, foundation systems, bridge and dam structures, silos and tanks, industrial pavements and nuclear containment structures.
First used in the late-nineteenth century, prestressed concrete has developed beyond pre-tensioning to include post-tensioning, which occurs after the concrete is cast. Tensioning systems may be classed as either monostrand, where each tendon's strand or wire is stressed individually, or multi-strand, where all strands or wires in a tendon are stressed simultaneously. Tendons may be located either within the concrete volume (internal prestressing), or wholly outside of it (external prestressing). Whereas pre-tensioned concrete uses tendons directly bonded to the concrete, post-tensioned concrete can use either bonded or unbonded tendons.
https://en.wikipedia.org/wiki/Prestressed_concrete



